- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Nwajiobi, Ogonna (3)
-
Raj, Monika (3)
-
Mahesh, Sriram (2)
-
Cohen, Ryan D. (1)
-
Reibarkh, Mikhail Y. (1)
-
Sim, Yonnette E. (1)
-
Streety, Xavier (1)
-
Verma, Ashish Kumar (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sim, Yonnette E.; Nwajiobi, Ogonna; Mahesh, Sriram; Cohen, Ryan D.; Reibarkh, Mikhail Y.; Raj, Monika (, Chemical Science)Selective modification of proteins enables synthesis of antibody-drug conjugates, cellular drug delivery and construction of new materials. Many groups have developed methods for selective N-terminal modification without affecting the side chain of lysine by judicious pH control. This is due to lower basicity of the N-terminus relative to lysine side chains. But none of the methods are capable of selective modification of secondary amines or N-terminal proline, which has similar basicity as lysine. Here, we report a secondary amine selective Petasis (SASP) reaction for selective bioconjugation at N-terminal proline. We exploited the ability of secondary amines to form highly electrophilic iminium ions with aldehydes, which rapidly reacted with nucleophilic organoboronates, resulting in robust labeling of N-terminal proline under biocompatible conditions. This is the first time the Petasis reaction has been utilized for selective modification of secondary amines on completely unprotected peptides and proteins under physiological conditions. Peptide screening results showed that the reaction is highly selective for N-terminal proline. There are no other chemical methods reported in literature that are selective for N-terminal proline in both peptides and proteins. This is a multicomponent reaction leading to the synthesis of doubly functionalized bioconjugates in one step that can be difficult to achieve using other methods. The key advantage of the SASP reaction includes its high chemoselective and stereoselective (>99% de) nature, and it affords dual labeled proteins in one pot. The broad utility of this bioconjugation is highlighted for a variety of peptides and proteins, including aldolase and creatine kinase.more » « less
-
Nwajiobi, Ogonna; Mahesh, Sriram; Streety, Xavier; Raj, Monika (, Angewandte Chemie)Abstract Lysine monomethylation (Kme) is an impactful post‐translational modification (PTM) responsible for regulating biological processes and implicated in diseases, thus there is great interest in identifying these methylation marks globally. However, the progress in this area has been challenging because the addition of a small methyl group on lysine leads to negligible change in the bulk, charge, and hydrophobicity. Herein, we report an empowering chemical technology selective triazenation reaction, which we term “STaR”, of secondary amines using arene diazonium salts to achieve highly selective, rapid, and robust tagging of Kme peptides from a complex mixture under biocompatible conditions. Although the resulting triazene‐linkage with Kme is stable, we highlight the efficient decoupling of the triazene‐conjugate to afford unmodified starting components under mild conditions when desired. Our work establishes a unique chemoselective, traceless bioconjugation strategy for the selective enrichment of Kme PTMs.more » « less
An official website of the United States government
